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Abstract Water-soluble starlike polymers containing concentrated carboxyl
groups were conveniently synthesized via the combination of “click” chemistry and
atom transfer radical polymerization. The starlike polymer was composed of a
shorter polyacrylate main chain and longer poly(acrylic acid) side chains. Alkyne
and azide groups were introduced to the structure units of the main chain by
esterification and the chain end of the side chain by substitution reaction of NaNj to
bromine, respectively. By click chemistry between alkyne and azide group, well-
defined starlike polymers were obtained. FT-IR, gel permeation chromatography,
and 'H NMR were used to characterize the resulting polymers. Aggregation
behavior demonstrated by transmission electron microscopy was observed when the
starlike polymers were dispersed in water at pH 7.0-7.5. Using the starlike polymers
as templates, water-soluble silver nanoclusters mainly consisting of Ag, supported
by the generated nanoparticles and carboxyl groups were successfully synthesized.
Also, their optical properties and morphology were characterized by UV-vis
absorption spectra and TEM.

Keywords Atom transfer radical polymerization - Starlike polymer - Click
chemistry - Nanoclusters - Water-soluble polymers

Introduction

Star-shaped polymers, which were first prepared several decades ago have attracted
much attention because of their unique properties as compared with those of their
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corresponding linear counterparts [1]. Nowadays, a wide variety of star polymer
architectures with well-defined molecular weights, structural and compositional
homogeneity have been prepared due to the development of various controlled
polymerization techniques [2, 3], such as ring-opening metathesis polymerization
[4], anionic polymerization [5], and controlled living radical polymerization [6-9].
Among these techniques, anionic polymerization is most popularly used to prepare
the star polymers with a predetermined arm molar mass. In general, star-shaped
polymers can be prepared by different approaches, including “core-first”, “arm-
first”, and “grafting-to” [10]. In the core-first approach (also named from-approach)
a multifunctional initiator is employed to simultaneously initiate the polymerization
of monomers and then forming the polymer chains [11-15]. The arm-first approach
involves use of a multifunctional cross-linker to form the core from which the arm
radiates [16-20]. The third strategy combines the controlled polymerization and
coupling reaction, providing well-defined arms and cores [21, 22]. These three
synthetic methods mentioned above have their own characteristics, thus making
them suitable for preparation of the particle-like star polymers. For example,
Kanaoka et al. [23] successfully prepared the core cross-linked star polymers in a
high yield via the cross-linking of the living poly(isobutyl vinyl ether) and divinyl
ether cross-linkers. Moreover, star polymers containing a highly cross-linked core
and many arms were synthesized by Gao et al. [24] via a novel method “star from in
situ generated core”, which belonged to the “core-first” method.

Star-shaped polymers have a molecular structure composed of numerous
peripheral arms chemically bonded to a single core [25, 26]. Recently, they have
been widely investigated in terms of micellar aggregation in solution because of
their well-defined macromolecular architecture [27, 28]. In addition, the aggregates
of star polymers which have amino groups, hydroxyl groups or carboxylic acid
groups in the side chains have versatile applications in medicine and biology
[29-31], catalytical chemistry [32—-34], and nanotechnology [35, 36]. For example,
Kumacheva’s group recently reported fast photoactivated synthesis of stable
fluorescent silver nanoclusters [37] and other semiconductor or magnetic nanopar-
ticles [38] by employing polymer microgels with concentrated carboxyl groups as
templates. Frey and co-workers [39] synthesized the star-shaped polyglycerol-
block-poly(acrylic acid) (PG-b-PAA) polymers with a core/shell structure, in which
the local density of carboxyl groups gradually decreased from core to shell. Using
them as templates, they successfully obtained stable silver nanoclusters. Tannen-
baum et al. [40] reported that synthetic polymeric matrices are used to guide the
formation of stable, monodisperse iron oxide nanoparticles uniformly distributed in
the polymeric matrix. Elbjeirami and Omary studied photochemistry of neutral
isonitrile gold(I) complexes, modulated photoreactivity by aurophilicity and
n-acceptance ability [41]. Kim and Lee [42] reported method of hydrogel-templated
growth of large gold nanoparticles, by which, they prepared discrete composite
nanoparticles consisting of a large gold core surrounded by a thermally responsive
hydrogel polymer.

We are particularly interested in core/shell structure of polymers and its application
as templates for silver nanoclusters. In this work, we report a novel starlike
polyacrylate-graft-poly(acrylic acid) (PAA,,-g-PAA,), which was synthesized by
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Scheme 1 Synthetic route of starlike polymer

the combination of atom transfer radical polymerization (ATRP) and “click”
chemistry (Scheme 1). This synthetic method was proved to be simple and highly
efficient. Using the starlike polymers as the templates, we successfully prepared
water-soluble Ag nanoclusters (Scheme 2).

Experimental
Materials

Tert-butyl acrylate (--BA) (99%) was purchased from Alfa Aesar and was purified
by passing through a basic alumina column to remove the inhibitor. Acetone
(Kermel, AR) was dried over 4A molecular sieves overnight and distilled before
use. Dichloromethane (Kermel, AR) was disposed following the description in a
previous report [43]. Ethyl 2-bromoisobutyrate (EBiB, Alfa Aesar, 98%),
N,N,N',N" ,N"-pentamethyldiethylenetriamine (PMDETA, Alfa Aesar, 98%), 2,2'-
bipyridine (bpy, Acros, 99%), trifluoroacetic acid (TFA, Alfa Aesar, 99%),
propargyl alcohol (Sinopharm Chemical Reagent Co. Ltd., AR), sodium azide
(NaN3, Tianjin Kaitong Chemical Reagent Co. Ltd., AR) were used as received.
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Scheme 2 Schematic illustration of aggregation of the starlike polymer
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Copper(I) bromide was supplied by Aldrich and purified as described previously
[43]. All other reagents were purchased from either Sinopharm Chemical Reagent
Co. Ltd. or Tianjin Chemical Reagent No. 1 Plant.

Methods

FT-IR spectra were recorded on a NEXUS-470 spectrometer at frequencies ranging
from 400 to 4,000 cm™'. Samples were thoroughly mixed with KBr and pressed
into pellet form. "H NMR spectroscopy was performed on a DRX-400 spectrometer.
Tetramethylsilane was used as an internal standard. The apparent molecular weights
and polydispersities (M,,/M,) of linear polymers and starlike polymers were
determined on an Agilent LC 1200 gel permeation chromatograph (GPC) equipped
with Agilent PL columns, a refractive index detector at 38 °C, and THF as the
eluent (1.0 mL/min). Transmission electron microscopy (TEM) was performed
using a JEM-2100/INCA OXFORD TEM (JEOL/OXFORD) at a 200 kV acceler-
ating voltage. Samples were deposited onto the surface of 300 mesh Formvar-
carbon film-coated copper grids. Excess solution was quickly wicked away with a
filter paper. In the samples of starlike polymers, the image contrast was enhanced by
negative staining with phosphotungstic acid (1.5 wt%). UV—vis absorption spectra
were measured on a Persee TU-1901 spectrophotometer at room temperature. The
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scanning conditions were as follows: a scanning rate of 50 nm/min, a response time
of 1 s, and a bandwidth of 2 nm.

Synthesis of poly(fert-butyl acrylate) (P(z-BA))

Poly(tert-butyl acrylate) was prepared following the method described by Miiller
et al. [44]. A clean and dry Schlenk tube was charged with CuBr (0.2401 g,
1.67 mmol), PMDETA (0.2900 g, 1.67 mmol), acetone (1.1 mL) and the mixture
was sonicated to fully coordinate the catalyst and ligand. Subsequently 2.3596 g
(18.4 mmol) tert-butyl acrylate and 0.3264 g (1.67 mmol) ethyl 2-bromoisobutyrate
(EBiB) were added. The tube was deoxygenated by five freeze—pump—thaw cycles
and sealed and placed in a preheated oil bath at 75 °C. The polymerization was
quenched after 5 h by cooling and exposure to air. The resulting P(--BA) was
isolated by precipitating into a mixture of water and cold methanol (1/1, v/v) and
drying under vacuum. '"H NMR (CDCl;, 400 MHz): & (ppm) = 4.10 (q, -CH,-),
3.74,2.22, 1.80 (broad, backbone protons of P(z-BA)), 1.50 (s, -C(CHj3)5), 1.25 (t, —
CH3), 1.10 (s, -C(CH3),-).

Synthesis of poly(propynyl acrylate) (PPA)

The linear poly(fert-butyl acrylate) was dissolved in dichloromethane and a fivefold
molar excess of TFA was added (with respect to the ester groups). The mixture was
stirred at room temperature for 24 h. When hydrolyzed, the polymers precipitated in
dichloromethane. They were separated by filtration, washed with dichloromethane,
thoroughly dried in vacuum at 40 °C, and characterized using FT-IR. Incomplete
hydrolysis was observed, but it did not influence the next experiment. FT-IR (KBr,
ecm™'): 3,431 (b, —OH), 1,721 (s, —-CO-).

The hydrolyzed linear P(+-BA) (1) and tenfold molar excess of thionyl chloride
were stirred at 55 °C for 12 h. The excess thionyl chloride was removed by
evaporating under vacuum. Due to the instability of the acylating oligomers, they
were directly used in the next reaction without characterization. The chlorine side
chain end-terminated oligomer (2) was added into 40 mL THF (dry) before the flask
was immersed into an ice-water bath. Under magnetic stirring, 0.34 mL
(0.077 mmol) propargyl alcohol in 1.1 mL TEA was slowly added dropwise into
this mixture during a 5-min period. The reaction mixture was allowed to stir for
48 h at room temperature. During this period, the reaction mixture slowly turned
into a brown color and the insoluble TEA salt precipitated out. After filtration to
remove the solid, the polymer product was precipitated three times in a mixture of
water and cold methanol (1/1, v/v) to remove the excess propargyl alcohol. The
precipitate was dissolved in dichloromethane and dried in anhydrous MgSO,
overnight. After removal of the dichloromethane, a reddish brown viscous product
was obtained and dried at 40 °C under vacuum overnight. GPC: M,, = 2,144 g/mol,
M,, = 2,987 g/mol, M, /M, = 1.39. FT-IR (KBr, cm™"): 3,290 (m, =C-H), 2,129
(w, C=C), 1,731(s, -CO-). "H NMR (CDClj, 400 Hz): § (ppm) = 4.69 (s, -CH,-),
4.10 (m, -CH,-), 3.57, 2.00, 1.83 (P(+-BA) backbone), 2.53 (s, =C-H), 1.25 (s,
—C(CH3),-), 1.16 (t, -CH3).
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Synthesis of poly(fert-butyl acrylate)-N3 (P(-BA)-N3)

A typical procedure for synthesis of poly(tert-butyl acrylate)-Nj is briefly described.
P(-BA) was dissolved in 40 mL DMF before twofold molar excess of sodium azide
was added. The reaction mixture was stirred magnetically at 65 °C for 48 h and
filtered to remove excess sodium azide. DMF was removed by rotary evaporation.
The obtained solid was extracted three times with ethyl acetate and water, and the
organic phase was dried with anhydrous MgSO, overnight. After removal of ethyl
acetate, poly(tert-butyl acrylate)-N; was isolated, and the structure was verified by
FT-IR and '"H NMR. FT-IR (KBr, cm™): 2,111 (s, -N3), 1,731 (s, -CO-). '"H NMR
(CDCl3, 400 MHz): 6 (ppm) = 4.10 (q, -CH»-), 1.49 (s, -C(CHs)53), 1.25 (t, -CH3),
1.14 (s, —C(CH3),-), 2.25, 1.74 (broad, backbone protons of P(-BA)).

Synthesis of starlike PAA,,-g-PAA,, polymers

A typical procedure for synthesis of poly(acrylic acid) was started with the ratio of
reagents [PPA,,]o/[P(+-BA),-Ns]o/[CuBr]y/[bpylo = 5/5/1/2. The click coupling
reactions between P(#-BA),-N3 (0.8689 g, 0.17 mmol) and PPA,, (0.0250 g,
0.17 mmol for alkyne units) were conducted in a 100 mL single-neck round flask
with 40 mL isopropanol as solvent and CuBr/bpy as catalyst. After stirring for 72 h
at 60 °C, the polymer solution was exposed to air, evaporated to remove solvent
isopropanol, and extracted three times with ethyl acetate and water. The organic
phase was dried over anhydrous MgSO, overnight. The solvent was removed by
rotary evaporation, and the final product was dried under vacuum at 40 °C. Finally
the obtained products were hydrolyzed following the same procedure as the
synthesis of PPA,,, to yield the starlike poly(acrylic acid) polymer. FT-IR (KBr,
ecm™'): 3,431 (b, —OH), 1,721 (s, -CO-). '"H NMR (DMSO, 400 Hz): § (ppm) =
12.25 (s, -COOH), 8.22 (s, Ar—H), 4.69 (s, -CH,-), 4.00 (s, -CH,-), 3.47, 2.05,
1.89 (broad, PAA backbone), 1.43 (broad, -CHj3), 1.25 (s, -C(CH3)-).

Synthesis of water-soluble Ag nanoclusters using photoreduction strategy

A typical procedure of the preparation of Ag nanoclusters using photoreduction
strategy was described as follows. The pH of a 2-mL aqueous solution of starlike
PAA,,-g-PAA, polymer (the concentration of carboxyl groups ca. 0.1 M) was adjusted
to 7.0-7.5. Then 1 mL of AgNO; aqueous solution was added slowly dropwise. After
stirring for 30 min at room temperature, 2 mL of the mixture was transferred into a
cleaned quartz cuvette and subjected to UV-irradiation for acquired time intervals.
Results and discussion

Synthesis and characterization of water-soluble starlike polymers

By using click reactions, starlike polymers can be synthesized by two strategies, in
the same manner as molecular brushes [45]. The first approach is to use
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azido-terminated long polymer chains to react with alkyne-containing oligomers.
The opposite approach is that an alkyne-terminated long polymer chains react with
an azido-functionalized oligomer. In this article, the former strategy was applied,
which proved to be a feasible and highly efficient for the synthesis of starlike
polymers. The synthetic strategy for the preparation of starlike polymers is
illustrated in Scheme 1.

To prepare the alkyne-containing core precursor PPA,,, the azido-terminated arm
precursor P(+-BA),-N3, and P(--BA) were synthesized. As shown in Table 1 and
Fig. 2a, all of these polymers had very narrow polydispersity index (PDI). P(+-BA)
with the lowest molecular weight (entry 1) was employed to prepare core precursor
PPA,,. The GPC traces indicated that there was no obvious change of apparent
molecular weights between P(+-BA) and PPA,, in THF, which was in accordance
with the actual situation after esterification, although the apparent molecular
weights was a little higher than the theoretical molecular weights.

For the synthesis of azido-terminated arm precursor P(z-BA),-N3, P(-BA) (entry
2) with narrow PDI (Table 1; Fig. 2a) were synthesized, followed by transformation
of bromine chain-end groups into azido groups via reaction with NaN; in DMF.
Target polymers were synthesized by coupling azido-terminated P(-BA),-N3 and
alkyne-containing PPA,,. To synthesize starlike polymers, the molar ratio of
P(-BA),-N3 to alkynyl groups was set to 1:1. As compared with brush polymers
[44], the grafting density, however, was confirmed not to be largely affected in this
condition, because the functional groups of the core precursor with low molecular
weight were easy to react. Initially, the click reaction was carried out incompletely
even in a long reactive time using the mixture of THF/H,O (v/v, 1/1) the solvent and
CuS04-H,0/sodium ascorbic acid (NaAsc) as the catalyst system, which might be
attributed to the relatively poor solubility of PPA,, and P(-BA),-Nj; in this solvent.
When isopropanol was employed as a replacement of the mixture of THF/H,O,
however, click coupling of the alkynyl and azide groups was complete 72 h. It can
be seen from the infrared spectra of P(#-BA),-N3, PPA,,, and PAA,,-g-PAA,, (Fig. 1)
that the strong absorption peak at 2,112 cm ™' assigned to stretched vibration of —Nj
[46] and the strong absorption peaks at 3,300 and 2,129 cm ™" assigned to stretched
vibration of —C=CH, respectively, are disappeared in the infrared spectra of

Table 1 Characterization and properties of the series of P(--BA)

Entry  [MIy/[Ily/[CuBrl/[PMDETAl  Conv. (%)  MS gee M. nmur ~ Mo/M,  DP®

1° 11/1/172 64 1800 1100 1.10 7
2° 23/1/1/2 65 2800 2100 1.18 15

* Polymer 1 is employed to the preparation of core precursor (PPA,,)

® Polymers 2 is employed to the preparation of arm precursors (P(--BA),-N3)

¢ M and I denote the monomer (-BA) and EbiB, respectively

¢ Calculated from "H NMR spectroscopy (400 MHz) recorded in CDCl; at 20 °C
¢ Measured by GPC in THF with polystyrene standards

f From "H NMR spectroscopy (400 MHz) in CDCl; at 20 °C

€ Calculated from M, nmr
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Fig. 1 FT-IR spectra of P(+-BA),-N3, PPA,,, and PAA,,-g-PAA,

PAA,,-g-PAA,. A new absorption at about 1,600-1,640 cm™! typical of the triazole
ring appeared [46], which seemed not to be obvious because of its incorporation with
strong absorption peak of the carbonyl group. In addition, the star polymers showed
the distinct stretching bands at 3,432 cm™!' (-OH) and 1,712 cm ™! (C=0) for the
arms, and the strong absorption at 2,977 and 2,863 cm ™! for the initiators. The GPC
analysis proved that the unreacted trace P(+-BA),-N3 and/or PPA,, component can
be completely removed from the resulting starlike polymer by simple extraction
with ethyl acetate and deionized water and then dialysis. Also, the unimodal and
symmetrical elution peak of the purified starlike polymer apparently shifted toward
a lower elution time region in comparison with that of the original PPA,, and
P(-BA),-N3 precursors, as shown in Fig. 2b, which also convincingly revealed the
click reaction was successful. In summary, all these results indicate that the click
conjugation between alkyne-containing core precursors and azide-terminated arm
precursors provides a versatile strategy for synthesizing water-soluble starlike
polymers.

Aggregation of starlike PAA,,-g-PAA,, polymers

Both the morphology and the average size of the aggregates from the poly(acrylic
acid) starlike polymers were investigated by the techniques of TEM and the
corresponding size-distribution histograms were shown in Fig. 3. This figure shows
that the poly(acrylic acid) starlike polymers are spherical particles, 11-16 nm in
size. In water at pH 7.0-7.5, the hydrophobic segments will aggregate together and
the hydrophilic parts arrange outside, so core/shell structure was obtained
(Scheme 2). Notably, these starlike polymers can be functionalized for the
preparation of silver nanoparticles or nanoclusters because the charged carboxyl
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Fig. 2 GPC traces of a P(+-BA) with DP 15 (I) and 7 (2); b PAA,,-g-PAA,, (3), P(+-BA),-N; (4), and
PPA,, (5)
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Fig. 3 TEM photographs and corresponding size-distribution histograms of starlike polymer PAA,,-g-
PAA, in water at pH 7.0-7.5

groups of arms segments exhibit a strong affinity to Ag™ ions [39]. This concept has
been widely used for the immobilization of Ag™ ions to provide Ag source for
further reduction reactions by employing chemical reductant, optical irradiation or
other ways [37, 47, 48]. In addition, since a core/shell structure can be obtained
from the starlike polymers PAA,,-g-PAA,, when they are used as the templates to
prepare silver nanoparticles, the “cage effect” can be anticipated.

Preparation of water-soluble silver nanoclusters used by poly(acrylic acid) graft
polymer templates

Water-soluble silver nanoclusters were synthesized by using water-soluble starlike
polymers as templates in the presence of UV-irradiation. In general, photochemistry
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reduction has recently been of interest as an approach for the preparation of
fluorescent metal nanoclusters, because it works at mild conditions and does not
produce other by-products [49]. In this article, novel starlike polymers were utilized
to concentrate, stabilize, and solubilize Ag nanoclusters in deaerated aqueous
solutions, and this method was quite simple and highly reproducible. By mixing
2 mL aqueous solution of starlike polymer (the concentration of carboxyl groups ca.
0.1 M) and 1 mL of 0.1 M aqueous silver nitrate into a 25 mL of cleaned one-neck
round bottom flask and then adjusting pH to 7.0-7.5 with 0.1 M aqueous NaOH
solution, silver ions readily interacted with the starlike polymer. The samples were
deaerated by bubbling with argon for at least 30 min at room temperature. 2 mL of
the mixture solution was transferred to a quartz cuvette and diluted with another
2 mL of distilled water. The molar ratio of acrylic acid groups to Ag™ ions was
about 2.5:1. Subsequently, photoreduction was carried out under UV-irradiation at
365 nm for various time intervals. During the total irradiation, the color of the
solution gradually changed from colorless to light yellow, then to purple, and finally
to dark reddish brown in accordance with the results of UV-vis spectra of the
solution of the starlike poly(acrylic acid) graft polymer doped with Ag™ ions after
UV-irradiation for different intervals of time (Fig. 4). Results of UV-vis spectra can
be ascribed to characteristic of the surface plasmon band of silver nanoparticles with
dimensions larger than ca. 2-3 nm [50-52]. The emergence of this absorption band
revealed larger silver nanoparticles appearing after 73 min irradiation in our
experimental conditions. The distinct absorption band at about 450 nm observed in
our work has not been reported for silver nanoparticles [47, 53-55], but it was
observed by Maretti and Scaiano et al. [56] for Ag nanoclusters synthesized in TFA
and cyclohexylamine and assigned to absorption by photoreduced silver nanocl-
usters Ag, [57, 58]. They believe that this absorbance is not due to the silver
plasmon band but rather to the presence of small silver clusters, although previous

0.7

Absorbance

T - : : . -
300 400 500 600 700 800
Wavelength (nm)

Fig. 4 UV-vis spectra of starlike poly(acrylic acid) graft polymer aggregates after mixing with Ag" ions

and UV-irradiating them for various time intervals
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Fig. 5 TEM image of Ag nanoparticles formed after 115 min irradiation and corresponding size-
distribution histograms

studies have identified absorbance band at 442 nm [59], which corresponds well to
the absorption they observed in their case at around 450 nm. Similarly, we also
ascribe the absorption band (about 450 nm in Fig. 4) to Ag, clusters supported by
the generated nanoparticles and carboxyl ions of the starlike polymer arms. From
TEM image and corresponding size-distribution histograms (Fig. 5), about 2.65 nm
Ag nanoparticles are obtained after 115 min UV-irradiation in poly(acrylic acid)
graft polymer aggregate. Ag nanoparticles are uniform, spherical particles. “Cage
effect” protects the nanoclusters in solution, which is important that such
nanoclusters are stable for future application [38].

Conclusions

In summary, we have demonstrated a synthesis of Ag nanoclusters from well-
defined starlike poly(acrylic acid) graft polymer, prepared via the combination of
ATRP and “click” chemistry, using UV-light as the reductant reagent, which has
mild reducibility. When the solutions of poly(acrylic acid)/Ag was subjected to UV-
irradiation of 365 nm, Ag, nanoclusters supported by the generated nanoparticles
and carboxyl ions of starlike polymer arms were obtained. “Cage effect” of starlike
poly(acrylic acid) graft polymer makes Ag nanoclusters stable and prevents further
growth of nanoclusters.
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