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Abstract Water-soluble starlike polymers containing concentrated carboxyl

groups were conveniently synthesized via the combination of ‘‘click’’ chemistry and

atom transfer radical polymerization. The starlike polymer was composed of a

shorter polyacrylate main chain and longer poly(acrylic acid) side chains. Alkyne

and azide groups were introduced to the structure units of the main chain by

esterification and the chain end of the side chain by substitution reaction of NaN3 to

bromine, respectively. By click chemistry between alkyne and azide group, well-

defined starlike polymers were obtained. FT-IR, gel permeation chromatography,

and 1H NMR were used to characterize the resulting polymers. Aggregation

behavior demonstrated by transmission electron microscopy was observed when the

starlike polymers were dispersed in water at pH 7.0–7.5. Using the starlike polymers

as templates, water-soluble silver nanoclusters mainly consisting of Ag2 supported

by the generated nanoparticles and carboxyl groups were successfully synthesized.

Also, their optical properties and morphology were characterized by UV–vis

absorption spectra and TEM.

Keywords Atom transfer radical polymerization � Starlike polymer � Click

chemistry � Nanoclusters � Water-soluble polymers

Introduction

Star-shaped polymers, which were first prepared several decades ago have attracted

much attention because of their unique properties as compared with those of their
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corresponding linear counterparts [1]. Nowadays, a wide variety of star polymer

architectures with well-defined molecular weights, structural and compositional

homogeneity have been prepared due to the development of various controlled

polymerization techniques [2, 3], such as ring-opening metathesis polymerization

[4], anionic polymerization [5], and controlled living radical polymerization [6–9].

Among these techniques, anionic polymerization is most popularly used to prepare

the star polymers with a predetermined arm molar mass. In general, star-shaped

polymers can be prepared by different approaches, including ‘‘core-first’’, ‘‘arm-

first’’, and ‘‘grafting-to’’ [10]. In the core-first approach (also named from-approach)

a multifunctional initiator is employed to simultaneously initiate the polymerization

of monomers and then forming the polymer chains [11–15]. The arm-first approach

involves use of a multifunctional cross-linker to form the core from which the arm

radiates [16–20]. The third strategy combines the controlled polymerization and

coupling reaction, providing well-defined arms and cores [21, 22]. These three

synthetic methods mentioned above have their own characteristics, thus making

them suitable for preparation of the particle-like star polymers. For example,

Kanaoka et al. [23] successfully prepared the core cross-linked star polymers in a

high yield via the cross-linking of the living poly(isobutyl vinyl ether) and divinyl

ether cross-linkers. Moreover, star polymers containing a highly cross-linked core

and many arms were synthesized by Gao et al. [24] via a novel method ‘‘star from in

situ generated core’’, which belonged to the ‘‘core-first’’ method.

Star-shaped polymers have a molecular structure composed of numerous

peripheral arms chemically bonded to a single core [25, 26]. Recently, they have

been widely investigated in terms of micellar aggregation in solution because of

their well-defined macromolecular architecture [27, 28]. In addition, the aggregates

of star polymers which have amino groups, hydroxyl groups or carboxylic acid

groups in the side chains have versatile applications in medicine and biology

[29–31], catalytical chemistry [32–34], and nanotechnology [35, 36]. For example,

Kumacheva’s group recently reported fast photoactivated synthesis of stable

fluorescent silver nanoclusters [37] and other semiconductor or magnetic nanopar-

ticles [38] by employing polymer microgels with concentrated carboxyl groups as

templates. Frey and co-workers [39] synthesized the star-shaped polyglycerol-

block-poly(acrylic acid) (PG-b-PAA) polymers with a core/shell structure, in which

the local density of carboxyl groups gradually decreased from core to shell. Using

them as templates, they successfully obtained stable silver nanoclusters. Tannen-

baum et al. [40] reported that synthetic polymeric matrices are used to guide the

formation of stable, monodisperse iron oxide nanoparticles uniformly distributed in

the polymeric matrix. Elbjeirami and Omary studied photochemistry of neutral

isonitrile gold(I) complexes, modulated photoreactivity by aurophilicity and

p-acceptance ability [41]. Kim and Lee [42] reported method of hydrogel-templated

growth of large gold nanoparticles, by which, they prepared discrete composite

nanoparticles consisting of a large gold core surrounded by a thermally responsive

hydrogel polymer.

We are particularly interested in core/shell structure of polymers and its application

as templates for silver nanoclusters. In this work, we report a novel starlike

polyacrylate-graft-poly(acrylic acid) (PAAm-g-PAAn), which was synthesized by
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the combination of atom transfer radical polymerization (ATRP) and ‘‘click’’

chemistry (Scheme 1). This synthetic method was proved to be simple and highly

efficient. Using the starlike polymers as the templates, we successfully prepared

water-soluble Ag nanoclusters (Scheme 2).

Experimental

Materials

Tert-butyl acrylate (t-BA) (99%) was purchased from Alfa Aesar and was purified

by passing through a basic alumina column to remove the inhibitor. Acetone

(Kermel, AR) was dried over 4A molecular sieves overnight and distilled before

use. Dichloromethane (Kermel, AR) was disposed following the description in a

previous report [43]. Ethyl 2-bromoisobutyrate (EBiB, Alfa Aesar, 98%),

N,N,N0,N00,N00-pentamethyldiethylenetriamine (PMDETA, Alfa Aesar, 98%), 2,20-
bipyridine (bpy, Acros, 99%), trifluoroacetic acid (TFA, Alfa Aesar, 99%),

propargyl alcohol (Sinopharm Chemical Reagent Co. Ltd., AR), sodium azide

(NaN3, Tianjin Kaitong Chemical Reagent Co. Ltd., AR) were used as received.

Scheme 1 Synthetic route of starlike polymer
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Copper(I) bromide was supplied by Aldrich and purified as described previously

[43]. All other reagents were purchased from either Sinopharm Chemical Reagent

Co. Ltd. or Tianjin Chemical Reagent No. 1 Plant.

Methods

FT-IR spectra were recorded on a NEXUS-470 spectrometer at frequencies ranging

from 400 to 4,000 cm-1. Samples were thoroughly mixed with KBr and pressed

into pellet form. 1H NMR spectroscopy was performed on a DRX-400 spectrometer.

Tetramethylsilane was used as an internal standard. The apparent molecular weights

and polydispersities (Mw/Mn) of linear polymers and starlike polymers were

determined on an Agilent LC 1200 gel permeation chromatograph (GPC) equipped

with Agilent PL columns, a refractive index detector at 38 �C, and THF as the

eluent (1.0 mL/min). Transmission electron microscopy (TEM) was performed

using a JEM-2100/INCA OXFORD TEM (JEOL/OXFORD) at a 200 kV acceler-

ating voltage. Samples were deposited onto the surface of 300 mesh Formvar-

carbon film-coated copper grids. Excess solution was quickly wicked away with a

filter paper. In the samples of starlike polymers, the image contrast was enhanced by

negative staining with phosphotungstic acid (1.5 wt%). UV–vis absorption spectra

were measured on a Persee TU-1901 spectrophotometer at room temperature. The

Scheme 2 Schematic illustration of aggregation of the starlike polymer
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scanning conditions were as follows: a scanning rate of 50 nm/min, a response time

of 1 s, and a bandwidth of 2 nm.

Synthesis of poly(tert-butyl acrylate) (P(t-BA))

Poly(tert-butyl acrylate) was prepared following the method described by Müller

et al. [44]. A clean and dry Schlenk tube was charged with CuBr (0.2401 g,

1.67 mmol), PMDETA (0.2900 g, 1.67 mmol), acetone (1.1 mL) and the mixture

was sonicated to fully coordinate the catalyst and ligand. Subsequently 2.3596 g

(18.4 mmol) tert-butyl acrylate and 0.3264 g (1.67 mmol) ethyl 2-bromoisobutyrate

(EBiB) were added. The tube was deoxygenated by five freeze–pump–thaw cycles

and sealed and placed in a preheated oil bath at 75 �C. The polymerization was

quenched after 5 h by cooling and exposure to air. The resulting P(t-BA) was

isolated by precipitating into a mixture of water and cold methanol (1/1, v/v) and

drying under vacuum. 1H NMR (CDCl3, 400 MHz): d (ppm) = 4.10 (q, –CH2–),

3.74, 2.22, 1.80 (broad, backbone protons of P(t-BA)), 1.50 (s, –C(CH3)3), 1.25 (t, –

CH3), 1.10 (s, –C(CH3)2–).

Synthesis of poly(propynyl acrylate) (PPA)

The linear poly(tert-butyl acrylate) was dissolved in dichloromethane and a fivefold

molar excess of TFA was added (with respect to the ester groups). The mixture was

stirred at room temperature for 24 h. When hydrolyzed, the polymers precipitated in

dichloromethane. They were separated by filtration, washed with dichloromethane,

thoroughly dried in vacuum at 40 �C, and characterized using FT-IR. Incomplete

hydrolysis was observed, but it did not influence the next experiment. FT-IR (KBr,

cm-1): 3,431 (b, –OH), 1,721 (s, –CO–).

The hydrolyzed linear P(t-BA) (1) and tenfold molar excess of thionyl chloride

were stirred at 55 �C for 12 h. The excess thionyl chloride was removed by

evaporating under vacuum. Due to the instability of the acylating oligomers, they

were directly used in the next reaction without characterization. The chlorine side

chain end-terminated oligomer (2) was added into 40 mL THF (dry) before the flask

was immersed into an ice-water bath. Under magnetic stirring, 0.34 mL

(0.077 mmol) propargyl alcohol in 1.1 mL TEA was slowly added dropwise into

this mixture during a 5-min period. The reaction mixture was allowed to stir for

48 h at room temperature. During this period, the reaction mixture slowly turned

into a brown color and the insoluble TEA salt precipitated out. After filtration to

remove the solid, the polymer product was precipitated three times in a mixture of

water and cold methanol (1/1, v/v) to remove the excess propargyl alcohol. The

precipitate was dissolved in dichloromethane and dried in anhydrous MgSO4

overnight. After removal of the dichloromethane, a reddish brown viscous product

was obtained and dried at 40 �C under vacuum overnight. GPC: Mn = 2,144 g/mol,

Mw = 2,987 g/mol, Mw/Mn = 1.39. FT-IR (KBr, cm-1): 3,290 (m, :C–H), 2,129

(w, C:C), 1,731(s, –CO–). 1H NMR (CDCl3, 400 Hz): d (ppm) = 4.69 (s, –CH2–),

4.10 (m, –CH2–), 3.57, 2.00, 1.83 (P(t-BA) backbone), 2.53 (s, :C–H), 1.25 (s,

–C(CH3)2–), 1.16 (t, –CH3).
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Synthesis of poly(tert-butyl acrylate)-N3 (P(t-BA)-N3)

A typical procedure for synthesis of poly(tert-butyl acrylate)-N3 is briefly described.

P(t-BA) was dissolved in 40 mL DMF before twofold molar excess of sodium azide

was added. The reaction mixture was stirred magnetically at 65 �C for 48 h and

filtered to remove excess sodium azide. DMF was removed by rotary evaporation.

The obtained solid was extracted three times with ethyl acetate and water, and the

organic phase was dried with anhydrous MgSO4 overnight. After removal of ethyl

acetate, poly(tert-butyl acrylate)-N3 was isolated, and the structure was verified by

FT-IR and 1H NMR. FT-IR (KBr, cm-1): 2,111 (s, –N3), 1,731 (s, –CO–). 1H NMR

(CDCl3, 400 MHz): d (ppm) = 4.10 (q, –CH2–), 1.49 (s, –C(CH3)3), 1.25 (t, –CH3),

1.14 (s, –C(CH3)2–), 2.25, 1.74 (broad, backbone protons of P(t-BA)).

Synthesis of starlike PAAm-g-PAAn polymers

A typical procedure for synthesis of poly(acrylic acid) was started with the ratio of

reagents [PPAm]0/[P(t-BA)n-N3]0/[CuBr]0/[bpy]0 = 5/5/1/2. The click coupling

reactions between P(t-BA)n-N3 (0.8689 g, 0.17 mmol) and PPAm (0.0250 g,

0.17 mmol for alkyne units) were conducted in a 100 mL single-neck round flask

with 40 mL isopropanol as solvent and CuBr/bpy as catalyst. After stirring for 72 h

at 60 �C, the polymer solution was exposed to air, evaporated to remove solvent

isopropanol, and extracted three times with ethyl acetate and water. The organic

phase was dried over anhydrous MgSO4 overnight. The solvent was removed by

rotary evaporation, and the final product was dried under vacuum at 40 �C. Finally

the obtained products were hydrolyzed following the same procedure as the

synthesis of PPAm, to yield the starlike poly(acrylic acid) polymer. FT-IR (KBr,

cm-1): 3,431 (b, –OH), 1,721 (s, –CO–). 1H NMR (DMSO, 400 Hz): d (ppm) =

12.25 (s, –COOH), 8.22 (s, Ar–H), 4.69 (s, –CH2–), 4.00 (s, –CH2–), 3.47, 2.05,

1.89 (broad, PAA backbone), 1.43 (broad, –CH3), 1.25 (s, –C(CH3)2–).

Synthesis of water-soluble Ag nanoclusters using photoreduction strategy

A typical procedure of the preparation of Ag nanoclusters using photoreduction

strategy was described as follows. The pH of a 2-mL aqueous solution of starlike

PAAm-g-PAAn polymer (the concentration of carboxyl groups ca. 0.1 M) was adjusted

to 7.0–7.5. Then 1 mL of AgNO3 aqueous solution was added slowly dropwise. After

stirring for 30 min at room temperature, 2 mL of the mixture was transferred into a

cleaned quartz cuvette and subjected to UV-irradiation for acquired time intervals.

Results and discussion

Synthesis and characterization of water-soluble starlike polymers

By using click reactions, starlike polymers can be synthesized by two strategies, in

the same manner as molecular brushes [45]. The first approach is to use
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azido-terminated long polymer chains to react with alkyne-containing oligomers.

The opposite approach is that an alkyne-terminated long polymer chains react with

an azido-functionalized oligomer. In this article, the former strategy was applied,

which proved to be a feasible and highly efficient for the synthesis of starlike

polymers. The synthetic strategy for the preparation of starlike polymers is

illustrated in Scheme 1.

To prepare the alkyne-containing core precursor PPAm, the azido-terminated arm

precursor P(t-BA)n-N3, and P(t-BA) were synthesized. As shown in Table 1 and

Fig. 2a, all of these polymers had very narrow polydispersity index (PDI). P(t-BA)

with the lowest molecular weight (entry 1) was employed to prepare core precursor

PPAm. The GPC traces indicated that there was no obvious change of apparent

molecular weights between P(t-BA) and PPAm in THF, which was in accordance

with the actual situation after esterification, although the apparent molecular

weights was a little higher than the theoretical molecular weights.

For the synthesis of azido-terminated arm precursor P(t-BA)n-N3, P(t-BA) (entry

2) with narrow PDI (Table 1; Fig. 2a) were synthesized, followed by transformation

of bromine chain-end groups into azido groups via reaction with NaN3 in DMF.

Target polymers were synthesized by coupling azido-terminated P(t-BA)n-N3 and

alkyne-containing PPAm. To synthesize starlike polymers, the molar ratio of

P(t-BA)n-N3 to alkynyl groups was set to 1:1. As compared with brush polymers

[44], the grafting density, however, was confirmed not to be largely affected in this

condition, because the functional groups of the core precursor with low molecular

weight were easy to react. Initially, the click reaction was carried out incompletely

even in a long reactive time using the mixture of THF/H2O (v/v, 1/1) the solvent and

CuSO4�H2O/sodium ascorbic acid (NaAsc) as the catalyst system, which might be

attributed to the relatively poor solubility of PPAm and P(t-BA)n-N3 in this solvent.

When isopropanol was employed as a replacement of the mixture of THF/H2O,

however, click coupling of the alkynyl and azide groups was complete 72 h. It can

be seen from the infrared spectra of P(t-BA)n-N3, PPAm, and PAAm-g-PAAn (Fig. 1)

that the strong absorption peak at 2,112 cm-1 assigned to stretched vibration of –N3

[46] and the strong absorption peaks at 3,300 and 2,129 cm-1 assigned to stretched

vibration of –C:CH, respectively, are disappeared in the infrared spectra of

Table 1 Characterization and properties of the series of P(t-BA)

Entry [M]0/[I]0/[CuBr]0/[PMDETA]0
c Conv.d (%) Mn, GPC

e Mn, NMR
f Mw/Mn DPg

1a 11/1/1/2 64 1800 1100 1.10 7

2b 23/1/1/2 65 2800 2100 1.18 15

a Polymer 1 is employed to the preparation of core precursor (PPAm)
b Polymers 2 is employed to the preparation of arm precursors (P(t-BA)n-N3)
c M and I denote the monomer (t-BA) and EbiB, respectively
d Calculated from 1H NMR spectroscopy (400 MHz) recorded in CDCl3 at 20 �C
e Measured by GPC in THF with polystyrene standards
f From 1H NMR spectroscopy (400 MHz) in CDCl3 at 20 �C
g Calculated from Mn, NMR
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PAAm-g-PAAn. A new absorption at about 1,600–1,640 cm-1 typical of the triazole

ring appeared [46], which seemed not to be obvious because of its incorporation with

strong absorption peak of the carbonyl group. In addition, the star polymers showed

the distinct stretching bands at 3,432 cm-1 (–OH) and 1,712 cm-1 (C=O) for the

arms, and the strong absorption at 2,977 and 2,863 cm-1 for the initiators. The GPC

analysis proved that the unreacted trace P(t-BA)n-N3 and/or PPAm component can

be completely removed from the resulting starlike polymer by simple extraction

with ethyl acetate and deionized water and then dialysis. Also, the unimodal and

symmetrical elution peak of the purified starlike polymer apparently shifted toward

a lower elution time region in comparison with that of the original PPAm and

P(t-BA)n-N3 precursors, as shown in Fig. 2b, which also convincingly revealed the

click reaction was successful. In summary, all these results indicate that the click

conjugation between alkyne-containing core precursors and azide-terminated arm

precursors provides a versatile strategy for synthesizing water-soluble starlike

polymers.

Aggregation of starlike PAAm-g-PAAn polymers

Both the morphology and the average size of the aggregates from the poly(acrylic

acid) starlike polymers were investigated by the techniques of TEM and the

corresponding size-distribution histograms were shown in Fig. 3. This figure shows

that the poly(acrylic acid) starlike polymers are spherical particles, 11–16 nm in

size. In water at pH 7.0–7.5, the hydrophobic segments will aggregate together and

the hydrophilic parts arrange outside, so core/shell structure was obtained

(Scheme 2). Notably, these starlike polymers can be functionalized for the

preparation of silver nanoparticles or nanoclusters because the charged carboxyl

Fig. 1 FT-IR spectra of P(t-BA)n-N3, PPAm, and PAAm-g-PAAn

2236 Polym. Bull. (2012) 68:2229–2242

123



groups of arms segments exhibit a strong affinity to Ag? ions [39]. This concept has

been widely used for the immobilization of Ag? ions to provide Ag source for

further reduction reactions by employing chemical reductant, optical irradiation or

other ways [37, 47, 48]. In addition, since a core/shell structure can be obtained

from the starlike polymers PAAm-g-PAAn, when they are used as the templates to

prepare silver nanoparticles, the ‘‘cage effect’’ can be anticipated.

Preparation of water-soluble silver nanoclusters used by poly(acrylic acid) graft

polymer templates

Water-soluble silver nanoclusters were synthesized by using water-soluble starlike

polymers as templates in the presence of UV-irradiation. In general, photochemistry

Fig. 2 GPC traces of a P(t-BA) with DP 15 (1) and 7 (2); b PAAm-g-PAAn (3), P(t-BA)n-N3 (4), and
PPAm (5)

Fig. 3 TEM photographs and corresponding size-distribution histograms of starlike polymer PAAm-g-
PAAn in water at pH 7.0–7.5
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reduction has recently been of interest as an approach for the preparation of

fluorescent metal nanoclusters, because it works at mild conditions and does not

produce other by-products [49]. In this article, novel starlike polymers were utilized

to concentrate, stabilize, and solubilize Ag nanoclusters in deaerated aqueous

solutions, and this method was quite simple and highly reproducible. By mixing

2 mL aqueous solution of starlike polymer (the concentration of carboxyl groups ca.

0.1 M) and 1 mL of 0.1 M aqueous silver nitrate into a 25 mL of cleaned one-neck

round bottom flask and then adjusting pH to 7.0–7.5 with 0.1 M aqueous NaOH

solution, silver ions readily interacted with the starlike polymer. The samples were

deaerated by bubbling with argon for at least 30 min at room temperature. 2 mL of

the mixture solution was transferred to a quartz cuvette and diluted with another

2 mL of distilled water. The molar ratio of acrylic acid groups to Ag? ions was

about 2.5:1. Subsequently, photoreduction was carried out under UV-irradiation at

365 nm for various time intervals. During the total irradiation, the color of the

solution gradually changed from colorless to light yellow, then to purple, and finally

to dark reddish brown in accordance with the results of UV–vis spectra of the

solution of the starlike poly(acrylic acid) graft polymer doped with Ag? ions after

UV-irradiation for different intervals of time (Fig. 4). Results of UV–vis spectra can

be ascribed to characteristic of the surface plasmon band of silver nanoparticles with

dimensions larger than ca. 2–3 nm [50–52]. The emergence of this absorption band

revealed larger silver nanoparticles appearing after 73 min irradiation in our

experimental conditions. The distinct absorption band at about 450 nm observed in

our work has not been reported for silver nanoparticles [47, 53–55], but it was

observed by Maretti and Scaiano et al. [56] for Ag nanoclusters synthesized in TFA

and cyclohexylamine and assigned to absorption by photoreduced silver nanocl-

usters Ag2 [57, 58]. They believe that this absorbance is not due to the silver

plasmon band but rather to the presence of small silver clusters, although previous

Fig. 4 UV–vis spectra of starlike poly(acrylic acid) graft polymer aggregates after mixing with Ag? ions
and UV-irradiating them for various time intervals
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studies have identified absorbance band at 442 nm [59], which corresponds well to

the absorption they observed in their case at around 450 nm. Similarly, we also

ascribe the absorption band (about 450 nm in Fig. 4) to Ag2 clusters supported by

the generated nanoparticles and carboxyl ions of the starlike polymer arms. From

TEM image and corresponding size-distribution histograms (Fig. 5), about 2.65 nm

Ag nanoparticles are obtained after 115 min UV-irradiation in poly(acrylic acid)

graft polymer aggregate. Ag nanoparticles are uniform, spherical particles. ‘‘Cage

effect’’ protects the nanoclusters in solution, which is important that such

nanoclusters are stable for future application [38].

Conclusions

In summary, we have demonstrated a synthesis of Ag nanoclusters from well-

defined starlike poly(acrylic acid) graft polymer, prepared via the combination of

ATRP and ‘‘click’’ chemistry, using UV-light as the reductant reagent, which has

mild reducibility. When the solutions of poly(acrylic acid)/Ag was subjected to UV-

irradiation of 365 nm, Ag2 nanoclusters supported by the generated nanoparticles

and carboxyl ions of starlike polymer arms were obtained. ‘‘Cage effect’’ of starlike

poly(acrylic acid) graft polymer makes Ag nanoclusters stable and prevents further

growth of nanoclusters.
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